
Abstract — In the last few years, Software Defined Networks

(SDN) and Network Functions Virtualization (NFV) have been

introduced in the Internet as a new way to design, deploy and

manage networking services. Working together, they are able to

consolidate and deliver the networking components using

standard IT virtualization technologies not only on high-volume

servers, but even in the end user premises.

In this context, this paper presents the NetFATE architecture,

a platform aimed at putting virtual network functions (VNF) at

the edge of the network. This platform is based on free and open

source software on Provider Equipment (PE) and Customer

Premise Equipment (CPE) nodes, so allowing function

deployment simplification and management cost reduction.

Finally, the paper proposes a case study, consisting in the

implementation of two virtual personal firewalls used by two

clients moving between two access points located at the edge of

the core network.

Index Terms — Software Defined Networking; Network

Functions Virtualization; Virtualization Framework; Live

Migration; OpenvSwitch; Xen Hypervisor.

I. INTRODUCTION

HE new paradigms of Software Defined Networks (SDN)

[1] and Network Functions Virtualization (NFV) [2-3]

have recently redefined the vision of the Internet, providing

network managers with a complete and programmatic control

of a dynamic view of the network. The power of SDN is based

on its characteristic of decoupling control and data planes,

moving the network intelligence to a centralized controller. On

the other hand, the emerging technology of NFV introduces an

important change in the network service provisioning

approach, leveraging standard IT virtualization technology to

consolidate many network equipment facilities onto standard

servers that could be located in data centers, network nodes

and even in the end user premises [2][4]. Moreover, with the

NFV paradigm, network functions become software

applications that can easily be migrated according to specific

policies aimed at optimizing energy efficiency, costs and

performance.

The combined application of both SDN and NFV is

strongly stimulating the interest of Service Providers and

Network Operators to make the innovation cycles of networks

and services faster and easier, reducing both OPEX

(operational expenses) and CAPEX (capital expenses), thanks

to the enormous possibilities of making operation processes

(e.g. configuration of network devices) automatic, and

network functions and services more flexible and cheaper. In

fact, decoupling network functions, e.g. middle-box

functionalities from dedicated hardware devices, and putting

them into Virtual Machines (VMs), NFV enables function and

service deployment over the network, and in particular toward

the edges of it [5-7]. Moreover, using SDN, traffic control and

management functions, like routing, can be moved out of the

network nodes and placed on a centralized controller software.

Coupling both the approaches, a centralized entity, called

Orchestrator, has a complete view of the network to manage

the Control Plane and deploy Virtual Network Functions

(VNFs). This will represent an enabling factor for a rapid

evolution of the dynamic service chain provisioning. Many

deployment scenarios of SDN and NFV could be envisioned

[8-9], depending on the network segments (e.g., core or edge)

and, consequently, on the exploitation time horizon (e.g.,

medium-long term or short term). Among them, one of the

most appealing use cases for Telco Operators and Service

Providers is the so-called Virtual Network Function as a

Service (VNFaaS). It aims at virtualizing functions of both

Customer Premises Equipment (CPE) devices and Provider

Edge (PE) nodes, like for example routing, VPN termination,

Deep Packet Inspection (DPI), QoS support and Bandwidth

differentiation, New-Generation Firewall (NG-FW) and WAN

Optimization Control (WOC).

According to the general approach of NFV, any router of a

Telco network can be virtualized. However, in the short term,

the approach of a partial virtualization, intended as a

virtualization of only the nodes at the edge of the network,

maintaining nodes in the core network not virtualized, seems

the most appropriate and widely accepted by Telco Providers.

The reason is not only to smooth the investments and assure

reliability during the transient period of the first deployment,

but also to locate network functions as much close to the users

as possible in order to minimize end-to-end latency.

Moreover, shifting the focus from the core network to the

edges (i.e., to the aggregation, the access or even up to the

users’ terminals) simplifies this evolution starting by the micro

scale, since by so doing it scales smoothly leading to

immediate revenues. This creates a volume and an economic

market that will drive investments outside of the network

infrastructure boundary and stimulate the advent of new

communications paradigms.

In this context, this work proposes the NetFATE (Network

Functions At the Edge) platform, a proof of concept (PoC) of

an NFV framework for the edge of Telco operator networks,

deepening on both architectural and implementation aspects.

More in detail, Section II illustrates the reference scenario

and the NetFATE architecture. Then, Section III presents the

An Open Framework to Enable NetFATE

(Network Functions At The Edge)

A. Lombardo*, A. Manzalini**, G. Schembra*, G. Faraci*, C. Rametta* and V. Riccobene*
* DIEEI, University of Catania, Italy - Email: name.surname@dieei.unict.it

** Telecom Italia, Strategy and Innovation-Future Centre, Turin, Italy - Email: antonio.manzalini@telecomitalia.it

T

978-1-4799-7899-1/15/$31.00 ©2015 IEEE

three main NetFATE elements, that is, the Client, the CPE

Node and the Orchestrator. NetFATE is then applied to a case

study consisting in a virtual firewall migration in order to

follow customers on their CPE nodes. Finally, Sections IV

draws conclusions and illustrates some future work.

II. REFERENCE SCENARIO AND ARCHITECTURE

In this section we describe the NetFATE platform

architecture. NetFATE is a virtual network platform that

implements NFV services at the edge of a Telco network.

According to the cloud computing service model classification

described in [10][11], it matches three service delivery

models: 1) Infrastructure as a Service (IaaS): the NetFATE

infrastructure can be supplied by the NetFATE owner to other

Telco enterprises to run or migrate their monitoring and

management network functions for their users whose traffic is

crossing the considered network; 2) Platform as Service

(PaaS): NetFATE can be used by other Telco enterprises as a

hardware/software platform to create and customize new

services to be provided to their customers; 3) Network as a

Service (NaaS): the owner of the network infrastructure

provides a turnkey solution of virtual network to third-party

network operators that can easily setup and sell network

services to their customers.

NetFATE architecture is compliant with the ETSI NFV

reference architectural framework described in [10]. Its main

elements, as shown in Fig. 1, are the Customer Premises

Equipment (CPE) nodes, also called Home Gateways, the

Provider Edge (PE) nodes, or Aggregation Nodes, the Data

Centers (DC), and the Coordination Server.

The CPE nodes are access gateways (AGs) that can be

either home gateways in a residential environment, or

medium/high performance routers in an enterprise

environment. Exclusively single customers typically use them.

On the contrary, PE nodes are the Aggregation Nodes of a

Telco IP network, and are typically shared by a high number

of customers. PE nodes are connected to each other through

the Telco Core Network, that is constituted by high-speed

WAN links and high performance forwarding devices.

According to the ETSI Specifications [10], both CPE and PE

nodes are included in the Network Function Virtualization

Infrastructure (NFVI) of NetFATE. The NFVI reference

architecture is constituted by three different domains, namely

the Compute domain, the Hypervisor domain and the

Infrastructure Network domain. The Compute domain

provides the computational and storage hardware resources

that allow NetFATE physical nodes to host the VNFs. Thanks

to the computing and storage virtualization provided by the

Hypervisor domain, each VM is able to be migrated from one

node to another one to optimize the deployment according to

specific performance parameters. Communications between

the VMs are provided by the Infrastructure Network domain.

A fundamental role in the NetFATE platform is played by

the Orchestrator; it runs on a dedicated server and

communicates with all the NFVI nodes through the Telco

operator IP network. Its goal is to allocate, migrate and

terminate VMs running network functions, and consequently

controlling the traffic paths according to the run-time

evolution of the network. More specifically, it is in charge of

managing and orchestrating the whole platform, the service

chains and the traffic paths according to the amount of traffic

crossing the network, the requirements of the Telco operator

and the Service Level Agreement (SLA) with the customers.

More specifically, for each new traffic flow entering the

network, the Orchestrator:

1) decides the NFVI nodes that have to host the service

elements that constitute the requested service chain,

taking into account the SLA with the customers;

2) instantiates or migrates some VMs in order to provide

virtual processing and storage resources to run the

requested network functions;

3) realizes the path to connect the VMs that run the

requested functions on the NFVI nodes;

4) configures the network interfaces (virtual and

hardware) of the nodes that have to forward the new

flow, in order to follow a given routing strategy;

5) releases some resources, at the end of a flow, killing

VMs that are no longer used by already active flows,

and deleting the relative virtual paths.

III. NETFATE ARCHITECTURAL APPLICATION

In this section we present a free and open source prototype

of NetFATE platform, describing hardware and software

elements employed to realize our test bed. Although in an

embryonic stage, it can be considered as the foundations of a

more complex middleware that will be able to provide a wide

set of simple and composite network services directly located

at the users’ homes and/or at the aggregation nodes at the edge

of the core network. In Section III.A we will give a brief

overview of the components of the NetFATE architecture; in

the same section we will describe the free and open source

architecture exploited to realize our prototype including details

about the software configuration we used at each network

element. Section III.B will focus on an implementation of the

CPE nodes, whereas Section III.C will describe the

implementation of the Orchestrator server.

A. Main NetFATE Elements

The NetFATE platform is characterized by three kinds of

devices:

Fig. 1. NetFATE Platform

1) Client: a device that generates/receives traffic flows

towards/from the IP public network accessing the Internet

through a local access point, the CPE node, that can be a

residential or a corporate gateway;

2) CPE Node: a network device deployed in customers’ sites

and equipped with two or more network interfaces in

order to guarantee Internet connectivity and provide

connection to the client devices. In the NetFATE

architecture the CPE Nodes are realized with a

virtualization framework, in order to create, destroy and

migrate virtual machines implementing a set of available

network functions, and an virtual switch to provide a

switching stack for the hardware virtualization

environment;

3) Orchestrator: a remote server that, according to what said

so far, mainly provides three functionalities:

a. Software Defined Network Controller: it is the core

application of an SDN network, and is based on the

OpenFlow protocol to enable configuration and

management of real and virtual SDN devices. It acts

as a sort of operating system for the network, sending

rules to the switches about port forwarding, and

choosing optimal paths for application data delivery;

b. Network Function Virtualization Coordinator: it is an

application that manages the lifecycle of virtual

machines at the home gateways directly

communicating to the VMs hypervisor. It is based on

the information coming from the Orchestration

Engine and the SDN Controller. The NFV

coordinator is in charge of creating, migrating and

destroying VMs, communicating with the virtual

machines hypervisor to send the instructions to

execute on the VMs at the CPE nodes;

c. Orchestration Engine: it is the component that

gathers information about the network (topology,

number of connected clients, required network

services, availability of network devices

implementing NFV). According to specific

algorithms, it decides how to manage the resources of

the network devices; the implemented policy can

refer to a wide range of aspects: energy consumption,

end-to-end delay between source and destination of a

data flow, number of hops of the path, overall

number of virtual machines active at the same time,

etc.

For the sake of simplicity, in the following we will focus on

a scenario constituted by two CPE nodes, two Clients and the

Orchestrator. Each Client connects to the CPE Node every

time it wants to access the public Internet. The CPE Node acts

as a local access point providing a DHCP service to the Client.

The CPE Nodes are connected throughout the public IP core

network to the Orchestrator, a remote server implementing the

three features presented above. All the information regarding

Clients, Network functions and NFVI nodes are stored in the

NFVI Database. With the aim of identifying clients, a captive

portal is implemented on each CPE Node. A RADIUS server

is installed on the Orchestrator to manage the procedures of

accounting, authentication and authorization by using a user

authentication procedure based on user name and password.

Once a client is authenticated and authorized to access the

NetFATE network, its information is sent to the Orchestrator

node for managing the virtual machines environment and the

routing paths on the underlying SDN network.

B. CPE Node Configuration

A CPE Node has been realized with a general-purpose

computer, equipped with at least two network interfaces, one

providing connectivity to client devices belonging to the local

area network, and the other connected to the IP core network.

As regards the virtualization environment, we can distinguish

between the host operating system (this element can be the OS

of the host machine or a virtual machine running on the

general purpose hardware), and a set of network virtualized

functions, i.e. virtual machines created and configured to

provide network services made available by the NetFATE

platform to the network clients. In our prototype the host OS is

CentOS release 6.4, directly installed on the bare metal,

whereas the guest virtual machines run light network oriented

OSs, such as CentOS, ZeroShell or similar. As virtual

machines hypervisor, that is the middleware software enabling

both virtual system management and hardware resource

sharing with the aim of executing multiple computer operating

systems on the same hardware concurrently, we have chosen

Xen Hypervisor. This is a free and open-source software,

developed by the University of Cambridge Computer

Laboratory, available for x86-64, IA-32 and ARM

architectures, supporting a form of virtualization known as

para-virtualization. Thanks to the para-virtualization paradigm

it is possible to obtain a faster execution of the VMs as

compared with the traditional approaches; more in detail, Xen

Hypervisor permits the virtual machines to share directly the

x86-64 hardware without the need to preventively specify the

resources to be allocated for the virtualized hardware. Under

this perspective the host OS only acts as a console to operate

Fig. 2. Networking infrastructure of a CPE node

Virtual Switch 1

IF 1

Guest VM
Network Function: Firewall

Virtual Switch 0

IF 0

10.0.0.1 192.168.1.2

10.0.0.55 192.168.1.55

Public IP

HOST O.S. CentOS + Open vSwitch + Xen Hypervisor

192.168.1.110.0.0.10 IP ROUTER

INTERNET

with the virtualization manager, enabling commands as create,

destroy and migrate.

Finally, OpenvSwitch has been installed on the host OS in

order to create and configure SDN-compliant virtual switches.

Once created, it is possible to connect both real and virtual

network interfaces to the virtual switches, and enable the

remote control of the switch by setting up a software-defined

controller. The networking infrastructure inside the CPE node

is presented in Fig. 2. Each virtual machine has assigned two

or more virtual network interfaces and each of them can be

connected to a virtual switch. The host OS acts as DHCP

server assigning private IP addresses to each new interface

when the virtual machine is created. Moreover, virtual MAC

addresses are assigned during the virtual machine

configuration in such a way that each virtual network function

has a set of univocal addresses that will be used by the SDN

controller to identify the virtual functions and route the

application data packets.

C. Orchestrator Configuration

The Orchestrator node plays a key role in the overall

platform. Its architecture is shown in Fig. 3. It is a remote

server implementing the three main functions discussed above

in the following way:

1) SDN Controller: this function has been realized by

using POX, an SDN python-based controller enabling

the management of virtual switches. The behavior of the

POX controller is described through a python script that

regulates the port forwarding of the virtual switches.

More in detail, when a packet coming from a new MAC

address is received at the virtual switch running at the

CPE node, the virtual device sends a query to the SDN

controller in order to know the forwarding rule for the

new flow. The SDN Controller will answer to the query

by sending the MAC address related to the virtual

machine implementing the required virtual network

function (a simple example of forwarding table will be

illustrated in Table III).

2) NFV Coordinator: this component manages the

virtualized network functions. In our prototype it has

been realized by using a C++ software implementing a

client-server application. The server runs on the

Orchestrator node, whereas clients run on the CPE

Nodes. The NFV Coordinator is aware of all the client

connections, their CPE access nodes, and the required

network functions thanks to the use of an Users

Database (see Table I) and a Network Functions State

Table (Table II). Furthermore, according to this

information and the implemented policies, the NFV

Coordinator and the Xen Hypervisor communicate to

each other according to a client-server paradigm to

create, migrate and/or destroy the virtualized NFs.

3) Orchestration Engine: this component implements the

business intelligence of the NetFATE platform. In our

prototype we used a very simple decision algorithm as

illustrated below: for each required service, a virtual

machine is run on the access CPE node of the traffic

flow requesting it. If a user moves from one site to

another site changing his access CPE node, all the VMs

implementing the requested network functions are

migrated on the new access node. Definition of metrics

and algorithms to manage the virtualization framework

and the related implementation in dedicated functional

blocks are included in future works.

IV. CASE STUDY: VIRTUAL FIREWALL MIGRATION

In this section we report a case study realized to evaluate

the effectiveness of the proposed architecture. We considered

a simple NetFATE PoC composed by two client PCs, two

Fig. 3. An overview of the Orchestrator node architecture

Table I: NFVI Database – Table of Users
USER Personal

virtual
firewall 1

Personal
virtual

firewall 2

Other
Virtual

Function s

Access
CPE
node

Last Packet
Timestamp

ID
Client 1

1 0 . . . 1

ID
Client 2

0 1 . . . 2

.

ID
Client n

.

Table II: NFVI Database – Table of Network Functions

Virtual Network
Functions

Active On Home
Gateway

Number of Active
Users

Personal Firewall 1 1 1 . . .

Personal Firewall 2 0 0 . . .

Load Balancer 0 0 . . .

Packet Inspector 0 0 . . .

.

Network Function n 0 0 . . .

Table III: NFVI Database – Table of SDN Controller forwarding rules

USER MAC Address Local IP
Address

MAC address of required
VNFs

ID Client 1 MAC 1 10.0.0.2 MAC of the VM implementing

Virtual Firewall 1

ID Client 2 MAC 2 10.0.0.3 MAC of the VM implementing

Virtual Firewall 2

.

ID Client n MAC of the VM implementing

Network Function n

CPE nodes acting as network access points and virtual

network functions providers, one remote Orchestrator acting

as RADIUS authentication and authorization server, SDN

controller and NFV coordinator. We created two virtual

machines implementing two personal virtual firewalls,

required by Client 1 and Client 2, respectively. We will

describe what happens when Client 1 accesses the Internet

through CPE 1, and then moves to the access point CPE 2 (see

Fig. 4 and Fig. 5).

As said in the previous section, the Orchestration Engine

algorithms are out of the scope of this paper, so in our testbed

a very simple policy has been employed, as described below:

a. when the clients are not connected to the network the

virtual machines implementing their personal firewall

functionalities are turned off;

b. when a client connects to one of the two available

access points, i.e. the CPE nodes of the proposed

platform, the related virtual personal firewall is turned

on at the access node where the client is connected to;

c. when the same user changes its Internet access point

moving from the CPE 1 node to the CPE 2 node, the

latter requests login credentials to the user through the

captive portal mechanism, and sends them to the

Radius server running on the Orchestrator server; once

identified, the Orchestrator migrates the personal

virtual firewall from the previous CPE node to the new

one;

d. finally, when the user traffic flow terminates (i.e. there

are no packets of it for a certain time period), the

Orchestrator arranges the release of virtual resources

assigned to its flows.

In order to realize user authentication and flow

identification, a VM executing a Captive Portal service is run

on each CPE node, in such a way that all users entering the

NetFATE network are identified by a login procedure

consisting in the insertion of user ID and password. Login

information provided by an entering user are sent by the

Captive Portal to the Radius server on the Orchestrator server,

in order to check whether the client is authorized or not to

access the network. If authorized, the NFVI Users database is

updated, that is the ID of the CPE node where the access has

been performed is stored in the field ‘Access CPE node’

related to entering client (refer to Table I).

Furthermore, user credentials are used by the Orchestrator

to derive the needed information from the same database,

where the required network functions are listed for each user.

In our case study we considered a personal firewall requested

by each user. According to this client requirement, the NFV

Coordinator establishes whether creating or not a new virtual

function communicating to the hypervisor at the CPE nodes.

More in detail, when the Captive Portal sends client

credentials to the Orchestrator server, the RADIUS server

authenticates and authorizes the client and, at the same time,

the NFV Coordinator checks the client ID in the User Table in

the NFVI Database. For each client a series of Boolean

variables specifies if a specific network function, among the

ones provided by the network operator, is required or not. Let

us suppose that Client 1, that requires personal virtual firewall

1, accesses the network through the CPE 1; the NFV

Coordinator checks the client ID in the NFVI Database,

finding that it requires personal virtual firewall 1. Once

established that a virtual function is required, the NFV

Coordinator verifies in the NFs database, Table II, if the

related virtual machine is active in the network. If this is the

case, the Orchestrator matches the client access gateway and

the gateway where the virtual function is running; if the two

fields are equal nothing to be done, otherwise, according to

our policy, the virtual function is migrated towards the access

gateway where the client is connected to. If the virtual

machine is not yet active, the NVF coordinator communicates

to the access CPE node hypervisor in order to create a new

VM with the required virtual function.

Let us highlight that the migration consists in the transfer of

the only volatile memory (i.e. the RAM) of the virtual

machine in order to avoid long transient periods between the

connection of the client to the new CPE node and the

availability of the network function at the new location. In our

prototype the images of all the virtual machines are saved in

the hard disk of the Orchestration Server and are made

available to the CPE nodes by using Network File System

(NFS). The server hosting the Orchestrator implements the

NFS daemon processes in order to make the disk images

available to its clients, i.e. the CPE nodes.

ACKNOWLEDGEMENTS

This work has been partially supported by the INPUT (In-

Network Programmability for next-generation personal cloUd

service supporT) project funded by the European Commission

under the Horizon 2020 Programme (Call H2020-ICT-2014-1,

Grant no. 644672), and by the "Programma Operativo

Nazionale “Ricerca & Competitività” 2007-2013” within the

project "PON04a2_E – SINERGREEN – RES NOVAE –

Smart Energy Master per il governo energetico del territorio”.

Fig. 4. Testbed time evolution

Virtual Switch 1

IF 1

Guest VMs
Personal Firewall 1

Virtual Switch 0

IF 0

10.0.0.55 192.168.1.55

CLIENT 1

HOST O.S. CentOS + Open vSwitch +
Xen Hypervisor

CPE 1

Virtual Switch 0

IF 0

Virtual Switch 1

IF 1

HOST O.S. CentOS + Open vSwitch +
Xen Hypervisor

CPE 2

ORCHESTRATOR

Guest VMs
NOT ALLOCATED

INTERNET

IP ROUTER

1
2

V. CONCLUSIONS AND FUTURE WORKS

This paper presents a PoC of the NetFATE platform, a free

and open source platform that deploys network functionalities

at the edge of the network. The architecture includes an

Orchestration Server, which is the decision maker in terms of

allocation of virtual resources and traffic routing, two CPE

nodes, i.e. the access points at the edge of the provider core

network where the network function virtualization framework

is deployed, and two clients, the final users of the architecture.

Two simple personal virtual firewall services have been

deployed and managed using a simplified allocation policy

according to which network services run near the client

requiring them; the prototype has been tested to evaluate the

effectiveness of the proposed solution.

As a future work we plan the implementation of service

chains at both CPE and PE nodes. According to this paradigm

each user, previously registered to the network, can require a

set of network functions (for this scope two or more virtual

machines will be used) and an orchestration engine, coupled

with the NFV coordinator and the SDN controller, will

establish how to manage the virtual network services.

REFERENCES

[1] White paper on “Software-Defined Networking: The New Norm for

Networks”, available at https://www.opennetworking.org/.
[2] White paper on “Network Functions Virtualisation”, available at

http://portal.etsi.org/NFV/NFV_White_Paper.pdf.

[3] A. Manzalini et al., “Software-Defined Networks for Future Networks
and Services,” White Paper based on the IEEE Workshop SDN4FNS,

[4] Network Functions Virtualisation – White Paper #3, “Network Operator

Perspectives on Industry Progress,” available at https://portal.etsi.org/
Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf

[5] A. Manzalini et al. “Clouds of virtual machines in edge networks,”

Communications Magazine, IEEE 51.7 (2013).
[6] A. Lombardo, A. Manzalini, V. Riccobene and G. Schembra, “An

Analytical Tool for Performance Evaluation of Software Defined

Networking Services”, in Proc. of SDNMO workshop, IEEE/IFIP
NOMS 2014, Krakow (Poland), May 5-9, 2014.

[7] A. Lombardo, A. Manzalini V. Riccobene, G. Schembra, “An Open

Architecture for Software Defined Services at the Edge,” EuCNC2014,
Bologna, Italy, June 23/26, 2014.

[8] ETSI GS NFV 001, “Network Functions Virtualization (NFV): Use

Cases”, 10-2013, available at http://www.etsi.org/deliver/etsi_gs/
nfv/001_099/001/01.01.01_60/gs_nfv001v010101p.pdf.

[9] ETSI – PoC, “NFV Proofs of Concept,” available at http://www.etsi.org/

technologies-clusters/technologies/nfv/nfv-poc.
[10] ETSI GS NFV 002, “Network Functions Virtualization (NFV):

Architectural Framework”, 10-2013, available at http://www.etsi.org/

deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf.

[11] P. Costa, M. Migliavacca, P. Pietzuch and A. L. Wolf, “NaaS: Network-

as-a-Service in the Cloud,” in Proc. of Hot-ICE’12, April 24 2012, San
Jose, CA.

Fig. 5. Messages exchange during the migration of the client 1 from CPE 1 to CPE 2.

