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Abstract—Emerging fog and mobile edge computing
paradigms will create distributed pervasive virtualization
environments, where computing, storage, and networking
resources will be deployed at the network boundary in
a capillary way. To effectively tackle the large dynamic
fluctuations in workload engendered by user-centric services,
effective energy management schemes must be in place to
modulate power consumption according to the actual processing
load in each installation. In this respect, service orchestrators
and multi- and cross-cloud energy management systems need
proper tools to understand how power consumption would
change with different placement decisions, both in the single as
well as in federated clouds.

In this paper, we describe a framework for exploring the
trade-off between performance and energy consumption. Our
work builds on the availability of both resource usage and power
consumption measurements in Cloud Management Software, and
makes proper correlation between these values to effectively sup-
port energy-efficiency strategies. We describe the implementation
of energy monitoring framework in OpenStack, which leverages
available features in the Ceilometer component.

I. INTRODUCTION

With the constant improvement in thermal design of data
centers, electricity drawn by IT equipment remains one of the
major costs for cloud operators; as a matter of fact, the Power
Usage Effectiveness1 (PUE) of modern data centers is very
close to the unit [1]–[3]. Hence, to further improve efficiency
of data centers focus should be given to effective management
of IT equipment.

Efficient usage of IT equipment tackles the well-known
non-linearity between performance and power consumption of
both computing and networking devices [4]. Beside improving
hardware efficiency, other mechanisms have been proposed to
modulate the power consumption of single devices, including
voltage and frequency scaling, low-power idle, and stand-by
states [5]–[9]. In a cloud environment, where many devices are
present and resources are virtualized, workload consolidation
on a small cluster of servers has proven to be the most
effective strategy to exploits such mechanisms, allowing to
minimize the total consumption of the entire infrastructure in
a coordinated way.

1Power Usage Effectiveness is the ratio between the total power drawn by
the data center, including air conditioning, lightning, electricity distribution
losses, and the power drawn by IT equipment. A PUE close to 1 indicates
that energy is mostly used for computation, hence a better efficiency of the
data center.

Workload consolidation is going to be even more important
in distributed clouds like fog and edge computing, which
envision many small deployments of IT equipment at the
network edge. In fact, with the grow of user-centric services,
the workload is expected to follow user distribution and mobil-
ity patterns, hence leading to uneven, unsteady, non-uniform
workload among the peripheral installations. In this scenario,
any orchestration and consolidation algorithm needs precise
information about the trade-off between power consumption
and performance in each installation, to effectively take deci-
sions on placement and migration of Virtual Machines.

In this paper, we sketch a framework for correlating resource
usage with energy consumption. It aims at providing a clear
picture that draws how different allocation and placement deci-
sions affect and impact power consumption of single servers,
virtual machines, or the whole data center. This is going to
be very useful in practice for workload consolidation and
power management algorithms, by supplying more dynamic
and precise information than current models. We also describe
the current implementation effort in OpenStack, building on
available information on CPU usage and integrating them with
power consumption measurements.

The paper is organized as follows. We review related work
in Section II. We introduce the architecture of our framework
in Section III. We give more details about energy monitoring
in cloud infrastructure in Section IV, which represents one one
of the main aspects in our framework. We describe the current
implementation stage in Section V, basically consisting in
integration of power consumption information in Ceilometer.
Finally, we give our conclusions and envision future actions
in Section VI.

II. RELATED WORK

Workload consolidation aims at reducing the number of
active servers, building on the rule of thumb that few heavy-
loaded servers consume less power than many lightly-loaded
servers. Many algorithms have been proposed for this purpose,
which either consider the power consumption of computing
resources only (e.g., [10]–[12]) or take the combination of
computing and networking resources (e.g., [9], [13]–[15]). The
common denominator in all approaches is a need for clear
and precise understanding of how power consumption changes
when the workload is shifted among the servers; as a matter



of fact, using the smallest possible number of servers does not
guarantee to achieve the overall minimal energy consumption
[16].

Usually, simple linear or step-wise models are used to
describe the trade-off between CPU usage and power con-
sumption, since CPU is the main source of power consumption
[17]. However, these models cannot take into account the com-
plexity brought by the presence of multiple CPUs, multiple
cores, power-management features (voltage/frequency scaling,
low-power idle, etc.) [17]. Further, servers from different
vendors have different characteristics, and even the behavior
of the same server changes with aging [18]. Statistical models
have been proposed for both CPUs and network cards, which
better capture the dynamic of real hardware [19]; however,
they are complex to manage and to be properly tuned for
different devices.

For what concerns data sources, resource usage is reported
by every Cloud Management Software (CMS). In addition,
extensions to OpenStack Ceilometer also allow to collect
power measurements.

OpenStack already includes an IPMI agent2, which collects
sensor data (including voltage and current measurements) on
individual compute nodes by leveraging the ipmitool3 utility,
which is commonly used for IPMI control on various Linux
distributions; power consumption is listed among available
Ceilometer metrics4.

The Kwapi framework [1] implements a modular archi-
tecture to collect data from heterogeneous power meters,
including legacy wattmeters, outlet power strips (usually called
Power Data Unit – PDU), and IPMI cards embedded in most
modern servers; the framework already includes drivers for
common protocols, like SNMP, IPMI, and serial links (see
Section IV).

Simple correlations between CPU utilization and power
consumption was already built with the above tools, which
highlighted the non-linear behavior and the irregularities due
to multiple cores and power management [17]. Such work
mainly aimed at validating linear models, but it has never been
turned into a functional framework for exposing power-usage
correlations to optimization algorithms.

III. SYSTEM ARCHITECTURE

The main purpose of our framework is to correlate perfor-
mance and energy consumption in cloud infrastructures, hence
providing more accurate information than most of currently
used models. In this respect, the framework includes a Green
Cloud Abstraction Agent (GCAA), which should be used by
energy-aware orchestration and placement algorithms to under-
stand how much energy is required to achieve given perfor-
mance, and vice-versa (see Fig. 1). It provides an abstraction

2OpenStack IPMI agent. URL: https://docs.openstack.org/admin-guide/
telemetry-data-collection.html#telemetry-ipmi-agent

3IPMItool provides a simple command-line interface to IPMI-enabled
devices. URL: https://sourceforge.net/projects/ipmitool/

4IPMI based meters for Ceilometer. URL: https://docs.openstack.org/
admin-guide/telemetry-measurements.html
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Fig. 1. Green Cloud Abstraction Agent provides an abstraction of the
underlying energy behavior.

of the underlying energy profiles, primitives, and behaviors,
with respect to both single or multi clouds environments; this
abstraction is accessible through an API that we indicate as
Green Cloud Abstraction Layer (GCAL). Indeed, the GCAA
is not expected to expose straight power consumption informa-
tion of the underlying infrastructure; rather, its main purpose is
a high-level abstraction of energy aspects, including the trade-
off between resource usage and energy. At the bottom, the
GCAA accesses power consumption and performance metrics
through legacy and enhanced interfaces of Cloud Management
Software (CMS).

Our purpose is to extend the Green Abstraction Layer
(GAL), an energy-aware interface defined by ETSI standard
ES 203 237 for network devices [20]. The GAL offers a
framework for information exchange between power-managed
data-plane entities and control processes. It enables energy
management protocols to determine consistently which power-
management capabilities are available at the data-plane, their
potential effects on both energy consumption and network
performance, and how to interact with them. The ambition
is to extend the concept to the cloud, hence to define an
interface that provides a hierarchical view of the cloud’s
internal organization, which abstracts the power management
primitives and the local control policies, so that entities at
each layer of the tree manage and orchestrate the underlying
entities, and expose a synthetic and aggregated set of operating
characteristics and available configurations to higher levels.

Through the GCAL interface, high-level orchestrators
and optimization engines would be aware whether power-
management features are available in underlying cloud in-
frastructures, how energy consumption changes in response to
different allocations of VMs and different workloads, and so
on. This information could be used to make the most efficient
usage of available cloud installations, as well as for advanced
control features such as integration with intermittent power
sources (such as renewables).

The internal architecture of the GCAA is depicted in Fig. 2
and reflects the above design considerations.

At the bottom of GCAA architecture, cloud API drivers
provide interfaces to different CMS (e.g., OpenStack, Ama-
zon Web Services). Such interface is used to retrieve data
about resource usage (CPU, disk, network card, number of



Green Cloud Abstraction Layer

Cloud Abstraction Layer

OpenStack API ......

Cloud Energy Efficiency

Power-Usage Correlation

VM Energy Usage

...

Database

G
re

e
n
 A

b
s
tra

c
tio

n
 S

e
rv

ic
e
s

C
lo

u
d
 A

P
I 

D
riv

e
rs

Green Cloud Abstraction Layer API

Cloud API 

Cloud Management API
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Fig. 3. Example of graphical representation of the trade-off between power
consumption and CPU utilization.

VMs, placement of VMs, etc.), energy usage (voltage, cur-
rent, power), and to request virtual resources (mostly, VM
instances). The Cloud Abstraction Layer is an internal layer
that provide a common interface to heterogeneous cloud
technologies.

At the core of the GCAA architecture, several processing
functions will abstract energy-related aspects of the underlying
cloud infrastructures; we refer to them as “green services”.
For example, the “Power Usage Correlation” function will
build power-to-usage curves for each physical server in the
infrastructure (similar to what shown in Fig. 3) [17]; this
curve could be used by energy-aware placement algorithms
when evaluating the impact of migrating VMs internally to a
single cloud. The “VM Energy Usage” will estimate the power
consumption ascribable to virtual resources, e.g., for billing
purposes [21]. “Cloud Energy Efficiency” will be responsible
to provide an aggregate estimation of how the power con-
sumption of the infrastructure changes when virtual resources
are added/removed; it could be used by green orchestrator
when evaluating the most efficient placement of VMs among
several clouds available. Other services can be envisioned;
the common database enables re-usage of information among
different functions.

Fig. 4. Kwapi modular architecture. Drivers are used to collect data from
heterogeneous power meters.

IV. MONITORING INFRASTRUCTURE

One of the basic functions of the GCAA is to retrieve
information about resource and energy usage. Resource usage
is commonly provided by every CMS, so the challenging
task is to collect data about power consumption. To this aim,
we set up an energy monitoring infrastructure integrated in
OpenStack.

The main objective in our framework is to collect measure-
ments from heterogeneous components, hence retrieving data
from different meters, with different communication protocols,
and with different data formats. To this aim, we use Kwapi
[1], a modular framework for monitoring power consumption
and publishing data in Ceilometer [22], which is the well-
known realization of the Telemetry service in OpenStack.
Kwapi includes drivers to query commodity power meters over
SNMP, serial/usb wattmeters, and the IPMI5 interface available
in many recent computing boards; this covers most hardware
deployed in existing data centers, including legacy servers with
a single motherboard as well as blade servers.

The Kwapi architecture6 for energy monitoring is shown in
Figure 4. At the bottom, specific drivers hidden the details of
the underlying metering technology and provide a uniform

5The Intelligent Platform Management Interface (IPMI) provides manage-
ment and monitoring capabilities of computer systems over the network,
without support from the firmware or the Operating System

6Kwapi System Architecture. URL: http://kwapi-g5k.readthedocs.io/en/0.
3-4/architecture.html.



Fig. 5. Kwapi message format for data sent on the Communication Bus.

and common interface for collecting data inside the Data
Consumer, which buffers data. Data Consumers are then used
by different kind of applications (e.g., Kwapi Pollster in
Ceilometer, graph visualization).

A. Kwapi Drivers

Drivers are responsible for collecting power consumption
data of the resources being monitored. Drivers are threads
initialized by a driver manager with a set of parameters loaded
from a configuration file. These parameters are used to query
the meters (e.g. IP address and port number) and determine
the sensor ID to be used in the collected metrics. Collected
measurements are represented in JavaScript Object Notation
(JSON) format, so they can be easily parsed to get the data.
The role of driver threads are:

1) Setting up wattmeters and probes;
2) Listening and decoding received data;
3) Appending signatures to the measurements, and publish-

ing them to forwarders.
Fig. 5 shows the message format that a driver publishes

on the bus. We use two kinds of drivers in our testbed. The
SNMP driver retrieve power consumption values by using the
SNMP protocol and unique OIDs, i.e., ”Object Identifiers,
which are addresses used to identify devices and their statuses.
These drivers can work with any device that supports the
SNMP protocol. The IPMI driver query the IPMI interface
for information about power consumption. We modified the
original driver, which makes use of the command line tool
‘ipmitool’, because it reported wrong values for our Intel
server boards. We use instead the command line tool ‘ipmi-
oem’, a special version of ipmi software tailored to the Intel
server architecture.

B. Kwapi Communication Bus

The Communication Bus implements a publish/subscribe
mechanisms where drivers are publishers and consumers are
subscribers. Each consumer must subscribe to drivers from
which it should receive data. ZeroMQ is the current broker-
less messaging framework that implements the Kwapi Com-
munication Bus. Optional Forwarders are installed on the
same servers as consumers, and replicate the same data to
multiple consumers that have subscribed for them. This allows
to reduce network traffic and bandwidth requirements. In
practice, Forwarders behave like special consumers on the
Communication Bus, in between real consumers and drivers.

C. Kwapi Data Consumers

Data Consumers collect measurements from the Commu-
nication Bus, verify the signature, and process it. There are

different Data Consumers already provided by the Kwapi
architecture, conceived to feed different external applications.

We make use of the REST API Data Consumer, which
implement a REST-based interface to power measurements.
This Consumer subscribes for data, computes the number of
Kwh of each driver probe, adds a timestamp, and stores the
measurement. Internally, this component has a Collector that
keeps a buffer of recent measurements, including identifier,
type, value, unit; data are periodically cleaned to avoid per-
sistence of removed probes. The REST API is periodically
queried by Kwapi Pollster to feed the Ceilometer database.

Other Data Consumers are available. For example, the RRD
consumer builds Round-Robin Database files from received
measurements, and generates graphs that show the energy
consumption over a given period, with additional information
about min/average/max energy consumption, cost estimations,
etc. The Live consumer is a visualization plugin that provides
a web interface with power consumption and network traffic
graphs.

D. Kwapi Pollster

The uppermost component in the Kwapi framework is the
Pollster. It is a python module developed according to a spe-
cific pattern that enables to add energy and power information
in the measurement dataset exposed by Ceilometer. When this
Pollster is periodically triggered by Ceilometer, it queries the
Kwapi API Consumer for data in the last time interval, and
returns such data for insertion into the internal database.

The Pollster provides a token for authentication, which
is verified by the REST API Consumer before sending the
requested data. For each probe, it creates a counter object and
publishes it on the Ceilometer bus. We are mainly interested
in two metrics:

• a cumulative counter for Energy, in kWh;
• a gauge counter for Power, in Watts.

E. Access to data

Data stored in Ceilometer can be accessed by standard
Telemetry API. The Telemetry service provides a REST API,
from which the collected samples can be retrieved, like the list
of meters, alarm definitions and so on. Example: the HTTP
message “GET /v2/meters” returns all known meters, based on
the data recorded so far. The response message can be either
in JSON or XML format.

In our framework, this interface will be used by the GCAA
to get data on resource usage and power consumption.

V. IMPLEMENTATION

Till now, the implementation of the GCAA framework has
mainly focused on retrieving power consumption information.
We have already deployed the monitoring infrastructure, and
we are currently able to retrieve power measurements from
both Raritan PX3-5260R PDU (via SNMP) and Intel IPMI
S2600KP blades though the Kwapi framework. The polling
interval is 2 seconds, which is enough for the matter of a
consolidation algorithm, though we can change this interval
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Fig. 6. Power consumption measured for increasing workload. A stress test
was conducted to incrementally saturate 1, 4 and 8 CPUs out of 8 available
on Intel server board S2600KP.

according to the requirement. An example of measurements is
shown in Fig. 6; in this test, we incrementally increased the
workload every 5 seconds so to saturate 1, 4, 8 CPUs out of 8
available on the board. As expected, the power consumption
is a stepwise curve.

The GCAA is written in python; MySQL is going to
be used as database for collecting information. Initially, we
will implement a communication driver for OpenStack, to
access energy-related information published by the Kwapi
framework.

The first green service will be the Power-Usage Correlation,
which is the main information required to drive a consolidation
algorithm like the one we proposed in [9]. An indicative
example of outcome is shown in Fig. 7, built on the same data
used for Fig. 6. Here we get a very raw and coarse correlation
between power consumption and system load. For example, we
cannot infer from this data whether two half-loaded CPUs are
more efficient than one single full-loaded CPU. Or we cannot
understand how power consumption changes when using one
or multiple cores in the same or different CPUs. The imple-
mentation of the Power-Usage Correlation service will process
data in a more accurate way, building a multi-dimension view
of how power consumption changes with respect to different
utilization of all available cores. In addition, the usage metric
should enable easy and direct comparison between servers
with different CPU models and clock frequencies.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have described an architecture for high-
level abstraction of energy aspects in cloud infrastructures.
Such abstraction is conceived to model how different man-
agement actions (mainly in terms of different allocation in
workload) affects power consumption with different granular-
ity levels (e.g., single servers or entire clouds). To this purpose,
we already envisioned a number of complementary services
that are worth for green orchestration and optimization engines
(e.g., power-usage correlation, cloud energy efficiency, VM
energy usage).
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Fig. 7. Example of power-usage correlation, with a typical convex behavior.
We consider 100% as full usage for a single CPU, so 800% corresponds to
full load for the 8-CPUs system.

Our next steps will be the definition of a proper model to
correlate power and resource usage for single servers. The
purpose is to take into account the multi-dimensionality given
by the presence of multiple CPUs and cores, and their different
usage patterns; this information may be used by system admin-
istrators for energy-aware workload consolidation. As a long
term objective, we plan i) to provide energy abstraction for the
whole consolidated cloud, to support consolidation algorithms
that act in multi-clouds environments; and ii) to estimate
power consumption that can be ascribed to specific software
instances, which can be used for billing purposes or to select
the most efficient software in mono-tenant environments, such
as Network Function Virtualization domains.
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